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Data reduction: Pointless, Scala, Truncate
Phil Evans, MRC Laboratory of Molecular Biology, Cambridge  November 2006

Version: this document refers to programs in CCP4 version 6.0.1, scala version 3.2.19+

Here are some brief notes on the data reduction steps following integration of images in eg
mosflm, ie processing from integrated intensities hkl, I, σI to merged hkl, F, σF

This document tells you how to run pointless, scala and truncate in the ccp4i GUI, and how
to interpret the output.

Input file of reflections

We need a sorted MTZ file of unmerged intensities, usually from mosflm. The file can come from
other integration programs, from denzo/scalepack via combat (though this may restrict the
scaling options in scala), or from d*trek via dtrek2scala.

If you have a single MTZ file and you know it is in the correct
space group, you can put it directly into the "Scale and Merge
Intensities" task, in the "MTZ in" box. The file will be sorted
(using sortmtz) before running scala.

If you have more than one MTZ file, then you must run the
"Sort/Modify/Combine MTZ Files" task first. You can always
use this task if you wish, and you also need it to reindex, to
change spacegroup or to edit batch numbers ("batch" numbers
are image numbers with an optional offset).

Multiple MTZ files

1. If you have multiple files belonging to the same dataset, from
different runs of mosflm, eg because you had interruptions in the image collection, they should
be sorted together. Note that the BATCH numbers must be unique, so that if you had more than
one image series numbered from 1, you should use the "ADD" option in mosflm to number
them from say 1001, 2001 etc. If you neglected to do this, you can renumber them with the
"Sort/Modify/Combine MTZ Files" task, then sort them together afterwards.

Example:

Sorting 3 files together Renumbering batches to make them unique
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2. If you have multiple datasets (eg MAD), then they should be sorted and scaled together, as
multiple-wavelength data is greatly improved by scaling all the datasets together, then merging
them separately. This is done automatically in scala provided that the datasets are distinctly
labelled with Project/Crystal/Dataset names. This should be done in mosflm (PNAME, XNAME,
DNAME commands) or imosflm, making sure that the batch numbers are also unique. The
dataset name is used to make column labels and filenames, so keep it short (eg 'peak', 'edge',
'remote'). Sort the files together as in the above example. Datasets can be reassigned in scala, but
it is much less convenient than doing it in mosflm.

Determination of Laue group & space group

The indexing of the lattice in mosflm is based on the lattice geometry, with no regard for the
symmetry of the diffraction pattern, which can only be determined after integration. The ccp4i
task "Determine Laue group" runs the program pointless to score potential symmetry
operators in the diffraction pattern, and to rank the possible Laue groups (point groups), and also
to inspect axial reflections for possible systematic absences which may indicate a likely space
group. Be careful, the presence of pseudo-symmetry may suggest a higher symmetry than the
truth. Pointless tries to allow for this possibility, but inspection of the scores for individual
symmetry elements may help to indicate the correct space group in difficult cases. [Note that the
scoring scheme in pointless is still under development and is likely to change in future versions.]

Example:
A pseudo-symmetrical case, true space group C2, indexed in I222 (parts of the log file from
pointless)

Analysing rotational symmetry in lattice group I m m m

Scores for each symmetry element

Nelmt  Lklhd  Z-cc    CC        N  Rmeas    Symmetry & operator (in Lattice Cell)

  1   0.898   6.58   0.99   43085  0.060     identity
  2   0.876   6.36   0.95   22234  0.119 *** 2-fold l ( 0 0 1)  {-h,-k,+l}
  3   0.427   4.84   0.73   22231  0.367 *   2-fold h ( 1 0 0)  {+h,-k,-l}
  4   0.315   4.61   0.69   59250  0.388     2-fold k ( 0 1 0)  {-h,+k,-l}

The dyad along l (element 2) is much stronger than the other two by scores Rmeas  and
correlation coefficient, and estimated "likelihood" (Lklhd in the table) of the correlation
coefficient.

Scores for all possible Laue groups which are sub-groups of lattice group

Lklhd is a likelihood measure, an un-normalised probability used in the ranking of space groups

Z-scores are from combined scores for all symmetry elements
in the sub-group (Z+) or not in sub-group (Z-)
    NetZ = Z+ - Z-
Net Z-scores are calculated for correlation coefficients (cc)
The point-group Z-scores Zc are calculated
    as the Zcc-scores recalculated for all symmetry elements for or against,

CC- and R- are the correlation coefficients and R-factors for symmetry elements not in the group

Delta is maximum angular difference (degrees) between original cell
and cell with symmetry constraints imposed

   Laue Group       Lklhd   NetZc  Zc+   Zc-    CC    CC-  Rmeas   R-  Delta  ReindexOperator

> 1  C 1 2/m 1  *** 0.978   1.80  6.50  4.70   0.95  0.70   0.12  0.38   0.0 [-k+l,h,k]
= 2    I m m m  *** 0.956   5.67  5.67  0.00   0.78  0.00   0.30  0.00   0.0 [h,k,l]
> 3       P -1  **  0.699   1.40  6.58  5.18   0.99  0.78   0.06  0.30   0.0 [-h,-k,1/2h+1/2k+1/2l]
> 4  C 1 2/m 1  **  0.679   0.67  5.98  5.31   0.73  0.80   0.37  0.28   0.0 [h-l,-k,-h]
> 5  C 1 2/m 1  *   0.551   0.10  5.71  5.61   0.69  0.84   0.39  0.23   0.0 [h+k,-l,-h]
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The scores here indicate that the true space group is C2 but the score for I222 (or I212121) is
close. [future work aims to improve this discrimination.]

In this example there are no axial systematic absences in space group C2 to examine, but in
other cases these may distinction between space groups with and without screw axes, eg
between P2 and P21.

Pointless can write a new MTZ file wth the "best" space group or point group, or alternatively
the space group may be changed using the "Sort/Modify/Combine MTZ Files" task. The merging
operation is identical for all spacegroups in the same point-group, since spacegroup translations
affect only the systematic absences at this stage. Unless you already know the spacegroup (ie for a
solved structure), it is better to set the spacegroup to the one without translations (eg P222 in the
orthorhombic system) since this makes the minimum assumptions.

Alternative indexing schemes

In some point-groups there are more than one (two or four) valid but non-equivalent indexing
possibilities. For your first crystal, you may choose any of these, but subsequent crystals must
match the first. This generally arises in cases where the point-group symmetry is less than the
lattice symmetry: these are the same point-groups which may lead to merohedral twinning, eg
point-group P3 has four possible indexing schemes in the lattice point-group P622 (see
$CHTML/reindexing.html). Within multiple datasets from the same crystal (eg MAD), you can
avoid this problem by only autoindexing one set, & using the same indexing matrix for the others.
Reindexing ambiguities may also arise in lower-symmetry point-groups in case of accidental
coincidences or relationships between cell dimensions (eg a=b in orthorhombic).

Consistent indexing may be automated with the program pointless, by giving it a merged
reference file (your first choice of indexing), using the "Test Alternative Indexing" task in ccp4i.

Determining Laue group Testing alternative indexing
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Options in the "Scale and Merge Intensities" task

A 3-wavelength example

Click this button if you have anomalous scatterers

Usually run truncate to
convert I to F (also to put all
datasets into the same file)

Generate FreeR set only on the
1st set, otherwise copy it

Set resolution limits (default as
in MTZ file)

Information for truncate

Dataset information from MTZ file: override
here if required

The default scale model is recommended in
most cases

Other options
These are in panels which are closed by default.

Excluding parts of data:

Batches may be excluded (list or range), or
whole datasets.

See above for resolution cut-off.

Set SdAdd parameter to value other than
default 0.02

Sometimes there are problems if the scale
factors have a large range (eg strong & weak
passes through the data, with relative scales of
eg 10), possibly causing failure with "Negative
scale" or severe lack of convergence. This panel
may be used to set damped shifts and possibly
unit weights, which may help.
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Interpreting the output

The scala logfile is rather long with many statistics, but some of them are only useful if there are
severe problems. At the end of the logfile there is a summary table which contains the information
useful for deposition and publication (in ccp4i, "View logfile" and click on "Show Summary"). Note
that if you scale multiple datasets together, they are each merged (averaged) separately, so the
logfile contains separate statistics for each dataset, as well as some correlation statistics between
them.

The statistics are best viewed as graphs (View Log Graphs) as illustrated below.  Based on the
output, you need to make some judgements about your data.

• Are there bad batches (individual bad batches or ranges of batches)?
• Was the radiation damage such that you should exclude the later parts?
• What is the real resolution? Should you cut the high-resolution data?
• Is there any apparent anomalous signal?
• Is the outlier detection working well?
• What is the overall quality of the dataset? How does it compare to other datasets for this
project?

Analysis by Batch number (equivalent to time)

1. Scales & B-factor

The relative B-factor is principally a (very rough) correction for radiation damage. Data with B-
factors < -10 should be treated with suspicion. Note that B is ill-determined with low-resolution
data and perhaps should not be refined.

A good case: scales uniform; B-factors small A bad case: <scale> increasing sharply;
B-factors large and negative (< -10), falling
rapidly. A sign of severe radiation damage

There is nothing you can do to correct for severe radiation damage, unless you have designed
your experiment specifically to exploit it (extrapolation to zero-dose needs every reflection to be
measured at several well-spaced time intervals).
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2. Rmerge etc

Are there any bad patches in the dataset? Examine graph of Rmerge v. BatchNumber

Above: something was horribly wrong at the beginning. In this case,
there was poor orientation matrix at the start, fixed by re-running
mosflm.

Left: steady decline in quality of data, in this case from radiation
damage.

Analysis by resolution

What is the real resolution? The best guide is the average
signal/noise < <I>/s(<I>) >, labelled Mn(I)/sd(Mn(I)) in table. A
typical cut-off is ~2: weaker data may make a small difference in
maximum-likelihood weighted refinement, but not much. It
certainly will not give good experimental phases

Right: a realistic resolution cut-off is around 1.8Å

Analysis against intensity

Rmerge is obviously always large for small intensities, but its value for
the largest intensities should be in the range 0.01 to 0.04 for good
data sets (0.033 in example on left). Larger values suggest that there
are some worrying systematic errors.
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Completeness & multiplicity

Datasets should be complete, as near to 100% as you can manage. Some loss of completeness can
be tolerated in the outermost resolution bins.

Dangers:

• watch out for bad anomalous
completeness (see example left).
Note that in P1 you need a rotation
of at least 180°+2θmax (better 360°)
to get complete anomalous data.

• Note that by default mosflm
integrates into the corners of square
detectors, leading to very
incomplete data at the maximum
resolution. You should apply a high
resolution limit (see example on
right).

High multiplicity gives more accurate data and is essential for use of the weakest anomalous signals
(eg sulphur), but note that Rmerge will tend to rise with increasing multiplicity even though <I> is
more accurate. The multiplicity-weighted Rmeas (=Rrim) does not suffer this problem, and Rpim gives a
measure of the accuracy of the average I.

Analysis of Standard Deviations

Scala compares the observed scatter of symmetry-related
observations around the mean with the estimated s(I), and
"corrects" the s(I) by a multiplier and a fraction of <I>

σ'(I)  =  SdFac √{σ2(I) + (SdAdd x I)2}

The multiplier SdFac is determined automatically (see Normal
Probability Analysis below), but the factor SdAdd is not: it defaults
to 0.02, which is typically fits reasonably well.

The plot on the right represents the distribution of normalised
errors δ = (I-<I>)/σ(I) as a function of <I>. This distribution
should have a standard deviation of 1.0, so the plot should be
horizontal with a value = 1.0 everywhere. If it slopes upwards, then σ(I) is too small for large I, so
SdAdd should be increased, or reduced if it slopes downwards. Typically, it is far from linear, since
this correction is very crude, but you should try to adjust SdAdd so that the line is not too
sloping.
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Correlations within and between datasets

If you have multi-wavelength datasets, then the anomalous differences for each dataset should be
correlated, as should the dispersive differences between them. Examination of these correlation
coefficients as a function of resolution gives an indication of reliability of the signal.

In this 3-wavelength example, the
correlations on anomalous
differences decline with resolution,
as expected, and look good to at
least 3.5Å. Bizarrely the correlation
on dispersive differences goes down
to zero at about 3.8Å resolution,
then climb to a high value again at
high resolution, which is extremely
suspicious: indeed, the dispersive
differences did not give much useful
phasing though the anomalous
differences did.

Within one dataset, an equivalent correlation analysis is done
between random halves of the dataset: clearly this only works well
with a reasonably high multiplicity (at least 4, preferably higher).
The plot on the right is for the "peak" dataset from the same 3-
wavelength set as the examples above. The anomalous correlation
(red) is always lower than that for the complete dataset compared
to the "edge" dataset, reflecting the lower multiplicity in the half-
set. The centric data (blue) should have a correlation coefficient of
zero, but the number of data is small so the error is large.

The correlation coefficient on I (as opposed to ΔI, green) is
another indicator of the maximum real resolution: if it is falling
rapidly at the edge, perhaps a high resolution cutoff should be
applied.
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Correlation of anomalous differences within a dataset are also
analysed in the "correlation plot" ("..._correlplot.xmgr" in the View
files from job pull-down). This is just a scatter plot of the two

estimates of Δanom from the half-
datasets. If they are correlated, then the
scatter plot will be elongated along the
diagonal (see right). The degree of
elongation may be measured as the
ratio of the RMS widths of the
distribution along the diagonal and
perpendicular to the diagonal. This
"RMS correlation ratio" is plotted
against resolution in the loggraph plots
and like the correaltion coefficient may be used to choose a resolution
cutoff for locating heavy atoms

Axial reflections
These can give some indication of the systematic absences and hence the
space-group, eg in the plot on the left for 00l reflections shows them
only present for l = 3n: this a hexagonal space-group, point-group P6,
suggesting the space-group is P62 or (in this case) P64. Be careful of
deciding the space-group too soon on the basis of insufficient data, bear
in mind that you may be wrong. Non-crystallographic screw axes
approximately parallel to a crystal axis may give absences which may be
misleading: sometimes these may be detected in the native Patterson.
Axial absences are analysed better in pointless.
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Normal Probability Analysis

To get the normal probability plots, in "View Files from Job", click on
<name>_normplot.xmgr (or <name>_anomplot.xmgr for the anomalous
probability plot). These plot the normalised deviation δ = (I-<I>)/s against
what would be expected from a Gaussian (Normal) distribution, thus if
the data truly followed a Gaussian distribution of errors with the

estimated σ, then all the points would
lie on the diagonal, with most of the
observations in the centre and fewer
the further away from the centre along the diagonal. Real data
always has more deviant observations than predicted from a
Gaussian, shown as the points curving away from the diagonal to
the top right & bottom left. The SdFac correction forces the
slope = 1 in the centre, but the overall truth of the error
assumptions may be judged from (a) how close to the centre that
the points deviate from the diagonal (b) how similar are the sub-
sets of data, fulls, partials & different

runs.
Above: a good example

Right: not so good but tolerable

Left: poor

If the plot is poor, there is not much you can do about it, except treat it
as a general indicator that the quality this dataset may not be the best.

In the case of the anomalous probability plot, δ = (I+ - I-)/σ and a slope > 1 in the centre indicates
that the measured anomalous differences are greater than would be expected from the standard
deviations.

However, note the example on the left, where there appears to be no
significant difference, but nevertheless there was useful phasing
information, in combination with other datasets.
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Conversion of intensity to structure amplitude F

This job is carried out by the program truncate, which is usually done as part of the "Scale and
Merge Intensities" task along with scala, though there is also separate task "Convert intensities
to SFs".

For perfect data, |F| = √I  but in the presence of errors, for small intensities the best estimate of F
is larger than √I. Truncate estimates the "best" F based on the probability distribution of I.

It also produces some statistics, the most
important of which are statistics which can be used
to detect twinning. In a merohedral twin, each
observed reflection is actually the sum of two
different reflections related by the twin symmetry.
There are apparently too few weak intensities,
since a weak reflection is added to a twin-related
reflection which is probably stronger (since it is
unlikely to be weaker). Similarly, there are too few
very strong reflections. The effect of this may be
seen as a sigmoidal cumulative intensity plot (right,
blue line). This plots the number of reflections with
intensities less than Z, the fraction of the average intensity (a function of resolution). The same
effect may be seen (less clearly) in the higher moments of E being nearer 1.0 than expected (E is
the normalised amplitude, <E2> = 1.0 at all resolutions).

The phenomenon of too few weak intensities can also arise from the spots not being properly
resolved on the images: weak reflections are then over-estimated due to the tails of neighbouring
strong reflections running into them.

Intensity statistics are distorted for very anisotropic data, since they compare intensities to the
mean intensity, which is assumed to vary only with resolution. In that case, the cumulative
intensity plot is usually above the theoretical line, and this may obscure twinning.


